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1. INTRODUCTION

Efforts to obtain useful information on the response of non-linear systems of engineering
interest revolve around many existing approximate tools, analytical or numerical as most of
them do not admit exact solutions. Amongst the available analytical techniques to solve
initial value problems (IVPs), mention may be made of the classical Krylov-Bogoliubov
averaging technique [1], the secular perturbation theory [2, 37, the method of multiple
scales [4], an incremental harmonic balancing method [5], the homotopy method [6],
a process analysis method [ 7], etc. A major deficiency of almost all the analytical techniques
is in their inability to accurately predict even a reasonable spectrum of the complex
response scenarios such as bifurcations to quasi-periodicity and chaos. Even though
numerical techniques often provide a more versatile (and less elegant) alternative, their
susceptibility to the choice of a wrong time step often reduces the reliability of the results
obtained [8, 9]. A third route based on numeric-analytical approaches is also available.
These techniques includes, among others, the phase space linearization (PSL) method
proposed by Iyenger and Roy [10-12] and a frequency-domain-based multiharmonic
balancing technique for predicting periodic orbits by Narayanan and Shekar [13]. There is
nevertheless no precise, unified and a generally applicable method available till date to solve
different kinds of non-linear IVPs with continuous or piecewise continuous vector fields.

It is well known that tangent spaces of non-linear ODEs, unlike linear ones, are ever
changing function of the independent variable (space or time). Thus, it is generally not
possible to replace the non-linear equation pathwise in terms of a linearized equation even
over a small step size. The recently proposed LTL procedure [ 14-17] avoids this difficulty
by constructing the linearized equations such that the linearized solution manifolds
transversally intersect the (unknown) solution manifolds of the original non-linear
equations at a countable set of points in the state space where the solution vector is sought.
The most important feature of this method is that it attempts to precisely satisfy the
governing non-linear ODEs of the physical problem at a given set of points along the axis of
the independent variable. This is achieved by constructing the LTL-based ODEs such that
the given non-linear ODEs are implicitly satisfied at a given point along the time axis. The
procedure eventually leads to a set of non-linear algebraic equations in terms of the desired
solution vector at the given point along the time axis. For a dynamical system posed in the
form of an IVP, the non-linear algebraic equations are uncoupled for different chosen points
along the time axis. Finally, the method is illustrated for a non-linear two-degree-of-
freedom system.
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2. THE BASIC LTL METHOD

The brief LTL approach is first explained with the help of a non-linear oscillator
described in the state space by the following system of ODEs for the dependent vector

x={x, x®, .. x"TeR"
d?x dx
—-— = ,—— ). 1

dr? U<x dt > M
Introducing the augmented response vector X = {{x; = x}, {x, = dx/dt}}" e R*", and

denoting the scalar elements of the vector field v = [v'¥, v'?, ..., v™]T, equation (1) may be
written in the state space as n first order ODEs:

dx(l) t

#() =x0. =12, ...,n,

dx(l) t

#() = v0(xy, x5, 1). @

The superscript T in the definition of the vectors indicates transposition. Using a vector
notation, the above system may simply be written as

dx

—=V(X,1), 3

it (X, 0 A3)
where V (X, 1) = {x9,0”|I=1,2, ...,n}T is a 2n-dimensional augmented vector field,

which is non-linear in X. The only independent variable, t € R is defined over the closed and
compact domain D = [0 T] < R. Let the subset of the time axis over [0, T] be strictly
ordered such that 0=ty <t; <t, < - <t; < - <t,=T and h;=1t; — t;_{, Where
ieZ". It is now intended to construct a set of n conditionally linear system of ODEs,
wherein the ith linear system should, in a sense, be a representative of the instantancous
non-linear flow at t = t;. The LTL system has to be so constructed as to implicitly satisfy the
governing non-linear ODEs at t =t;. In the LTL scheme that follows, the ith locally
linearized system is of the same dimension as the given non-linear system such that it is also
n-dimensional and is preferably obtainable from the given non-linear system with the
simplest and least alterations. Here a convenient and easily adaptable methodology of
linearization using LTL, henceforth labelled as the basic LTL (BLTL) scheme, is first
described. Towards this, the ith linearized ODEs are constructed by recasting equation (3)
over D; = (t;—y, t;] as

dX _

o AX2X(t), t) X + B(), “4)
where the n x n matrix A(X,, t;) and the n-dimensional vector B(t) are to be so chosen as to
satisfy the identity:

AX, 1) X; + B(ty) = V(X ty). (%)

Elements of the matrix A(X}, t;) are functions of the still unknown (discrete) solution vector
X; and thus equation (4) is clearly linearized with conditionally constant coefficients. Since
equation (4) is required to satisfy equation (3) at the left end of the domain segment D, the
initial condition vector to equation (4)is X (t;_,) £ X;_, = X;_,. Now, suitable constraint
equations need to be framed. Towards this, the solution of equation (4) is explicitly



LETTERS TO THE EDITOR 581

written as

<t

X(t)=YXut, t;i—y) {Xi—l +J Y U(Xiot, ti—l)B(t)dt}s (6)

i—1

where ¥(X;, t, t;—4) is the fundamental solution matrix. While the first term on the
right-hand side of equation (6) represents the complementary solution, the second one,
involving integration, stands for the particular integral due to the vector function, B(t). The
constraint condition, i.e., X; € M n M (M is the solution manifold of the original non-linear
equation (3) and M is the solution manifold of the LTL equation (4)), is now obtained by
requiring that

Xi:Xi (7)

in equation (6). This leads to the following n algebraic non-linear equations in terms of the
unknown set of vectors, X;:

D:( X Xi—1, i tio1) =0, ()

where the vector non-linear function @; is given by

L
Q=X — V(X t;, ;1) {Xi—l +J Y- (X, t, 1) B()dt}. )
tioq
Equation (8) consists of n algebraic and non-linear (transcendental) equations for the
unknown vector x; and may be solved using an approach similar to Newton-Raphson.

3. ERROR ESTIMATES

An estimate of error involved in the proposed LTL procedure may be obtained by
expanding both the solution vector of the non-linear differential equation and the solution
vector of the corresponding transversal LTL equation in implicit Taylor’s series and
comparing the terms in both the expansions that are similar. The steps involved in the error
estimate are outlined in the following. First, the solution vector X corresponding to original
system of non-linear differential equations (3) is expanded in a Taylor’s series at
X;—1 = X(t;—1) using a step size h; =t; — t;—1 as

Xi=Xi 1+ VX, ti)h+0(h)

dV(X;— 1, ti—1)

:Xi1+|:V(Xiati)_ at

ﬂh+0m%

= X;_1 + V(Xut)h + O(h). (10)

Similarly, the solution vector X corresponding to the LTL equation (4) is implicitly
expanded in Taylor’s series at X; ; = X;_; as

X=X, +[AX,t)X;_1 + B(t;-1)]h + O(h?)

B(t;—1)

=X, + |:A(Xi, t)(X; — {AX, t) Xi—1 + B(t;—1)} h) + B(t;) — d dr h]h + O(h?)

= X1 + [AX; t) X + B(t)] h + O(h?). (11)
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For the above expansions to be valid, the vector functions V and B need to have C!
continuity. Using the constraint equations ( 5) and (7), the above expression reduces to the
right-hand side of equation (10) except for the remainder term of order O(h?). Hence, the
vector X; has a local error of O(h?). Thus, it is clear that the linearized velocity vector
X, = dx/dt, has a local error of O(h?). The linearized displacement vector X, will therefore,
have an error of O(h®). Moreover, the global error orders are one integral order less than the
corresponding local error orders.

4. HIGHER ORDER LTL PROCEDURES

The present aim is to derive other forms of LTL schemes with capabilities to remain close
to the original path as followed by the non-linear system with the given boundary
conditions, provided that the chosen step size is sufficiently small. The basic form of LTL,
presented in the previous section, only ensures transversal intersections and not a consistent
closeness of the paths. In what follows, a method for deriving consistently higher orders and
path-sensitive LTL-based ODEs is outlined. To derive, for instance, an LTL scheme, one
order higher than the basic scheme of section 2, equation (1) is differentiated once to obtain

d3x

i o (x, x, x@, ..., x™, 1), (12)

where the right superscript over v denotes the order of differentiation with respect to t.
Introducing the augmented response vector X = {xV, x®, ..., x"~ 1 x™}T equation (12)
may be written in a vector form as

dX . .

—=V(W,1), 13

T W, (13)
where X e R", V(X,t) = {x,x®, ..., x®, v (X, 1)} is an (n + 1)-dimensional vector

field, which is non-linear in X. The corresponding higher order LTL (HLTL) equation can
be written as

= = AX, 1) X + B, (14)

where X (x) = {1, 2, ..., "D T = (¥ T is the augmented HLTL solution
vector. The (n+ 1)x(n+1) matrix A(X;t) (conditionally constant) and the
(n + 1)-dimensional vector B(t) are to be so chosen as to satisfy the identity:

AXy 1) X + B(t) = V(X o). (15)

The augmented HLTL equation is solved, over the subdomain D;, subject to the initial
conditions X;_; = {Xi_1, v(Xi-1,t;—1)}" and the constraint condition X; = X, The rest of
the steps to obtain the required solution vector are the same as that outlined for BLTL
case in section 2. The error estimates for HLTL essentially follow the same steps as in the
section 3. Thus, the local and the global error orders for X; are, respectively, O(h?) and O(h).
In other words, the linearized acceleration vector dX,/dt, has a local error of O(h?). The
linearized velocity vector X,, has a local error of order O(h*) and linearized displacement
vector has a local error of order O(h*). Here it may be noted that, the acceleration vector,
which has the highest derivative in t, is however artificially constructed for the HLTL
system and does not constitute an element of the required solution vector. The elements
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belonging to X < X, therefore, do not exceed a local error order of O (h%). Of course, it needs
to be noted that this improved accuracy is obtainable only with a higher computational
cost.

5. ERRORS IN THE PHASE-INDEPENDENT REGIME: A SPECIAL CASE

In general, solutions of ODEs with different initial conditions (while holding the other
system parameters to be the same) are different. However, there is a special case in positively
damped linear or non-linear engineering dynamical systems, wherein the system
trajectories, x"(t), starting with distinct initial conditions xY (t,), t >t and j = 1,2, ... .
converge to a unique function, say y(t), as (t — ty) > oo Should such a response regime,
where the memory of initial conditions is asymptotically lost, exist, it is inferred to as
phase-independent [18]. Due to the asymptotic uniqueness of the evolving trajectory, the
intersection point with any approximate and transversal trajectory is unique in the
phase-independent case. One thus concludes that in such a case the LTL method should
pick up this intersection point nearly exactly irrespective of the chosen time step size, subject
only to the errors inevitable in any root searching procedure (see Figure 9(a) and 9(b)).

6. CERTAIN COMPUTATIONAL ISSUES

Computations of the fundamental solution matrix and its inverse, crucial for the
construction of a linearized solution, require exponentiation of certain (possibly quite large)
system matrices. Let it be required to numerically obtain [® (¢, t;,— ;) = exp {[M](t — t;—1)}-
A computationally expedient way to do so is to divide the interval (t;_, t] into 2* equal
sub-intervals and make use of the following identity:

Ot 1, 1) = {cb((r + %) t>} (16)

Denoting the argument of the kth exponent RHS of the above equation as @, (t;—,) and
h =27%(t — t;_,), one may use a truncated Taylor expansion (retaining four or even fewer
terms) to compute @, (t;_) as

Oy (timy) =1+ [M]Ih + [M]*hi/2 + -, (17)

where [I] is an n x n identity matrix. A similar scheme may also be utilized to obtain the
inverse @' (t, t;—) = exp { — [M](t — t;—,)}. In this case,

O (tio) =1 — [M1hy + IMPP B2 + - (18)

At the time when this article was written, the attention of the authors was attracted to
a recent paper by Leung [19], where a similar matrix exponentiation as outlined in this
section has been utilized for the response calculation of linear engineering systems under
deterministic and random loading conditions.

7. NUMERICAL ILLUSTRATIONS

Even though the focus of the present work is on the propositions and theoretical error
estimates of transversal linearization scheme, a rather limited numerical illustration on the
two-degree-of-freedom system is presented here. Presently, a two-degree-of-freedom system



584 LETTERS TO THE EDITOR
is defined by the following system of second order non-linear ODEs:
X1 4 04%, + x; + kixi + kyx;x3 = A;sin(A, t),
Xy 4 X5 42X, 4 k3x? 4+ kyx3 = A, sin(Ayt + ). (19)

The corresponding LTL equations over the domain D; in four-dimensional space may be
written as

_ dx, _ dx,
V1= X1, )2 2?7 y3 =X, and J’4=?,
V1 0 1 0 0Y (4 0
V2 _ — (A +kiylic) —04 —kyyiiv1vaier O ]y n Aysin(Ay1)
V3 0 0 0 1()ys 0
Va — k3yiie1 0 —Q2+kay3iv) 1) (ya Ay sin(iyt + @)

(20)

The solution may be obtained as explained in section 2 and is omitted for the sake of
brevity.

8. NUMERICAL RESULTS

In this section a few numerical results are presented for the case of a non-linear
two-degree-of-freedom system, using the BLTL method. In all the presentations to follow,
the time step size, h;, for integration has been made constant for all i. The difference between

—BLTL
a. e RKGS
2 -
14
~ 04
X
14
24
-3 I 1 I v

-0-4 -0-3 -0-2 -0-1 0-0 0-1 0-2 03 0-4

Figure 1. A typical elliptic one-periodic orbit, k; = 0-5, k, = 0-6, k3 = 0-6, ky = 0-3, A; =20, 4, = 80,1, =8,
Jy =60, ¢ =00, h=001.



LETTERS TO THE EDITOR 585

1.5

1.0

0-5

0-0

-0-5

-1.0 4

-1.5

-0-3 -0-2 -0-1 0-0 0-1 0-2 0-3

Figure 2. A typical one-periodic orbit, k; =05, k, =06, k3 =06, ky =03, A; =20, 4, =80, 1, =8,
Jy =60, ¢ =00, h=001.

——BLTL
Gan e RKGS

-0-4 T T T 4 1
36 38 40
Time, t (sec.)
Figure 3. Time history of x,(¢), h = 0-01.

the results obtained from BLTL and HLTL methods compare very well and can hardly be
represented graphically. Hence, all the results reported here are obtained using the BLTL
method alone. An elliptic one-periodic orbit has been obtained via the BLTL method and
a sixth order Runge-Kutta scheme (RKGS) in Figures 1 and 2. The comparison of results is
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Figure 4. Time history of x,(t), h = 0-01.

—BLTL
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Figure 5. A quasi-periodic orbit of the two-degree-of-freedom system using BLTL method, k; = 0-5, k, = 05,
k3 =06,k, =03, 4, =8, 4, =40, 1,y =4, 1, =4n, ¢ =00, h =001.

quite good as may be observed from the phase-plots in Figures 1 and 2. In Figures 3 and 4,
the time history plots of the displacement components x; and x, are given. In Figures 5 and 6
the phase plots and the time history plots are reported for different sets of parameters (ky,
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Figure 6. A quasi-periodic orbit of the two-degree-of-freedom system using BLTL method.

—BLTL

e RKGS
06 -

0-4

Figure 7. Time history of x,(¢), h = 0-005.

k,, k3 and k,) and different frequencies. Figures 7 and 8 show the time history plots of x; (¢)
and x,(t) as obtained from RKGS and BLTL, respectively. In the phase-independent
response regime, the LTL method picks up the intersection point nearly exactly irrespective
of the chosen time step size, subject only to the errors inevitable in any root searching
procedure. However, RKGS is sensitive to the chosen time step (vide Figures 9(a) and 9(b)).
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Figure 8. Time history of x,(¢), h = 0-005.

— RKGS, h=0.01 o BLTL,h=090 -~ RKGS, h=0.90

dx,/dt

(a) t (b) t

Figure 9 (a) Demonstration of phase-independence k; = 0-5, k, =06, k3 = 06, ky =03, 4, =40, A, = &0,
Ay =314, 2, = 1-0. (b). Performance of BLTL and RKGS for large time step sizes. k; = 0-5, k, = 06, k3 = 06,
ky, =03, A, =40, 4, =80, 1, =314, 2, = 1-0.

9. DISCUSSION AND CONCLUSIONS

In this letter, a simple error analysis for non-linear initial value problems, as solved via
the locally transversal linearization (LTL) method developed by the authors earlier [ 14-17],
is proposed for the first time. In this method, corresponding to a given non-linear dynamical
system, a set of conditionally linear dynamical systems are derived such that each linear
system has its validity over a chosen step size and satisfies the non-linear vector field at the
two boundary points of the time interval under consideration. In other words, given a time
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interval and the known initial state, the conditionally linear system is so constructed as to
transversally intersect the non-linear trajectory at the end of the interval. The proposed
error analysis in the LTL procedure is based on expanding both the solution vector of the
non-linear differential equation and the solution vector of the corresponding transversal
LTL equation in implicit Taylor’s series and comparing the terms in both the expansions
that are similar.

The conditional linearization achieved via the principles of LTL may be construed either
as a flow or a map. Either way, the analytical nature of the flow or the difftomorphism may
be exploited to obtain certain useful results. For example, the basic concept of LTL may as
well be made applicable to a large class of non-linear boundary value problems, governed
by non-linear ODEs as shown in reference [ 17]. Efforts are presently on to apply the same
principles for boundary-value problems governed by non-linear partial differential
equations.
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